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Abstract: There have been concerns about the potential health risks posed by microplastics (MP).
The detection of MP in a variety of food products revealed that humans are ingesting MP. Never-
theless, there is a paucity of data about their impacts, as well as their uptake, on intestinal barrier
integrity. This study examined the toxic effects of oral administration of two doses of polyethylene
microplastics (PE-MP) (3.75 or 15 mg/kg/day for 5 weeks; mean particle size: 4.0–6.0 µm) on the
intestinal barrier integrity in rats. Moreover, the effect of melatonin treatment with MP exposure
was also assessed. The PE-MP particle uptake, histopathological changes, Alcian blue staining,
Muc2 mRNA, proinflammatory cytokines (IL-1β and TNF-α), and cleaved caspase-3, as well as tight
junction proteins (claudin-1, myosin light-chain kinase (MLCK), occludin, and zonula occludens-1
(ZO-1)) were assessed. Oral administration of PE-MP resulted in apparent jejunal histopathological
alterations; significantly decreased mucin secretion, occludin, ZO-1, and claudin-1 expression; and
significantly upregulated MLCK mRNA, IL-1β concentration, and cleaved caspase-3 expression.
Melatonin reversed these altered parameters and improved the PE-MP-induced histopathological
and ultrastructure changes. This study highlighted the PE-MP’s toxic effect on intestinal barrier
integrity and revealed the protective effect of melatonin.

Keywords: polyethylene microplastics; intestinal barrier; tight junction proteins; melatonin;
proinflammatory cytokines
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1. Introduction

MP pollution is now considered among the world’s most significant environmental
issues [1]. It refers to thin films, particles, or plastic debris with a diameter < 5 mm [2].
Polyethylene (PE) is the most prevalent type utilized in houseware, pipes, bottles, toys,
food packing films, containers, reusable bags, and trays [3]. Because of the compact size
of MP, it is readily ingested by organisms and accumulates in vivo, which is biologically
hazardous [4]. The identification of MP in numerous dietary products confirmed human MP
ingestion. MP is ubiquitous in wastewater, groundwater, and surface water. Plastics have
been detected in drinking water; therefore, this problem has been examined recently [5,6].
Numerous studies have proven that ingested MP accumulates in the gut of numerous
species [7–9].

Epithelial organs, including gastrointestinal tracts, are subjected to various assaults
from chemical, biological, or pathogenic insults. Nonetheless, the organism maintains these
barriers’ integrity in some cases, thereby preventing chronic inflammation. In addition
to forming a physical layer, several epithelial, as well as nonepithelial, cell types produce
multilayered, biochemical, highly dynamic physical and immunological protection to
preserve tissue homeostasis [10]. This barrier system must be permeable selectively in order
to permit nutrients and water absorption while continually preventing harmful noxae. The
barrier is often intact, preventing the initiation of an uncontrolled inflammatory response.
Nevertheless, the barrier is compromised in some situations, causing an inflammatory
reaction to eject the invading noxae [11].

The intestinal barrier consists of several layers. The outer layer includes secretory
immunoglobulin A (sIgA), mucus, defense proteins like antimicrobial proteins (AMPs),
and the commensal gut microbiota. The middle layer consists of intestinal epithelial cells
(IECs), whereas the inner part comprises immune cells of adaptive, as well as innate,
immunity [10]. Tight junctions (TJs) between adjacent intestinal epithelia are vital for
the functioning of the physical intestinal barrier. The tight junction consists of numerous
cytosolic and transmembrane proteins, including junctional adhesion molecules (JAM),
cingulin, occludin, zonula occludens (ZOs), claudins, and tricellulin, interacting with each
other, as well as with the cytoskeleton, and build a complex architecture [12].

The claudins form the backbone of tight junctions and are the most important com-
ponents of the tight junctions. Occludins are important in maintaining the stability and
barrier function of the tight junctions [13]. Occludin expression has been found to be
severely reduced in disease models of intestinal inflammatory disorders, implying that
it plays an important role in barrier integrity maintenance [12]. ZO-1 is also assumed to
function as a multidomain scaffold, coordinating the assembly of transmembrane and
cytosolic proteins into the tight junction and/or regulates the activity of these proteins
once assembled [14]. Myosin light chain kinase (MLCK) is a Ca2+ calmodulin-dependent
serine/threonine kinase that constantly modulates actomyosin reorganization and cell
contraction. MLCK is involved in intestinal epithelial regulation, inflammation, and gas-
trointestinal disorders [15]. The phosphorylation of myosin light chain (MLC) by MLCK
results in increased paracellular permeability and epithelial shedding at villous tips [16].

MP with dimensions greater than 150µm are not absorbed. They remains bound to the
intestinal mucus layer and directly interact with intestinal epithelial cells’ apical parts [17].
Numerous studies on how MP impact on the gut tract demonstrated that they could result
in oxidative stress and inflammation in intestinal epithelial cells, alternations in intestinal
permeability, alternations in mucin’s volume and expression, alternations in gut microbiota
composition, and resulting in immune cell recruitment or changing cytokine secretion [18,19].
According to the findings of Li et al. (2020), PE-MP can cause intestinal dysbacteriosis and
inflammation [20]. Jia et al. (2023) reported that polypropylene MP induced colonic redox
system imbalance, inflammatory reactions, decreased mucus secretion and damaged the
colonic tight junctions [21]. PVC-MPs also reduced intestinal mucus output and increased
intestinal permeability, according to Chen et al. (2022). Furthermore, they demonstrated
significant alterations in gut microbiome composition and metabolome profiles [22]. On
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the contrary, some studies revealed no oxidative stress, inflammation, or other adverse
health effects [23]. Moreover, whether MP affect the intestinal barrier integrity through
their impact on the intestinal epithelial tight junction proteins is not well clarified.

Melatonin is a hormone generated by the pineal gland controlling circadian rhythm,
as well as other hormones. It has been proven to have several therapeutic effects, such
as immunoregulation, anti-inflammatory, and antioxidant properties [24–27]. Melatonin
treatment has also improved GI tract diseases [28–31]. Melatonin administration, according
to Ahmed et al. (2022), may be effective in the prevention of experimental colitis in rats
due to its antioxidant and anti-inflammatory effects [28]. Kim et al. (2020) reported a link
between melatonin and microbiota, demonstrating that bacterial sensing via TLR4, mucin,
and Reg3 production by goblet cells was involved in the anti-colitic effects of melatonin,
implying that melatonin may be useful in microbiota control and therapeutics for irritable
bowel syndrome (IBD) [29]. Melatonin has also been shown to be an effective treatment for
improving IBS score, GI symptoms, and quality of life in IBS patients due to its anxiolytic,
anti-inflammatory, anti-oxidative, and motility regulation actions [32]. Conversely, some
studies illustrated that melatonin immunological actions are not constant; nonetheless,
they are conditional and have the potential to ameliorate both pro- and anti-inflammatory
impacts [33].

PE-MP comprise most MP in the environment. Furthermore, most MP in the environ-
ment have a size between 1 and 10 µm [34]. Moreover, several studies have reported that
environmental pollutant-induced adverse health effects are generally caused by chronic
exposure at low doses [35,36]. With reference to Park et al. (2020), they administered PE-MP
to mice via gavage at doses of 3.75, 15, or 60 mg/kg body weight in accordance with a
protocol approved by the Korea Institute of Toxicology and proposed that the NOAEL
for reproductive and developmental toxicity of PE-MP dosed repeatedly for 90 days is
less than 15 mg/kg bw/day [35]. Therefore, in this study, 4–6µm PE-MP at doses of 3.75
and 15 mg/kg body weight was utilized to determine the impacts of PE-MP oral exposure
on the intestinal histopathology, intestinal mucin secretion and epithelial tight junction
protein expressions as essential components of the intestinal barrier function. Additionally,
we attempted to determine whether melatonin treatment could effectively alleviate any
intestinal damage expected from PE-MP exposure.

2. Results

There were no substantial differences between subgroup IA and subgroup IB (control
groups) in all studied parameters.

2.1. PE-MP Particles Uptake by the Jejunum

The PE-MP particle uptake by the jejunum was demonstrated and quantified by light
microscopic images, which confirmed substantially higher numbers of PE-MP particles in
PE-MP-exposed groups relative to controls in a dose-dependent manner (Figure 1).

2.2. Melatonin Improved Jejunal Histopathological Changes Induced by PE-MP Particles

As demonstrated in Figure 2, control groups exhibited a normal morphological struc-
ture of the jejunal intestinal wall as detected in the apparent intact intestinal mucosa,
including crypts and villi with their abundant goblet cells and lining enterocytes, as well as
outer muscular coat and intact submucosa. Exposure to PE-MP induced apparent villous
degeneration and shortening with epithelial atrophy, marked inflammatory cell infiltration
of the lamina propria, vacuolated crypt epithelial lining, widened inter-villous spaces, and
congested submucosal blood vessels.
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Figure 1. (A) Representative photographs of light images of PE-MP particles in the jejunal tis-
sue samples from experimental groups: (a) control group; (b) melatonin group; (c) 3.75 mg/kg
PE-MP; (d) 15 mg/kg PE-MP; (e) 3.75 mg/kg PE-MP + melatonin; (f) 15 mg/kg PE-MP + melatonin.
(B) Quantification of PE-MP particles in the jejunal tissue samples after digestion in hydrogen
peroxide.
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with basal, oval, euchromatic nuclei, and abundant mucous-secreting goblet cells (G). Each villus
has a connective tissue core (CT). Mel-treated group: showed almost the same records as the control
samples without abnormal histological changes. 3.75 mg/kg PE-MP-treated group: The villi have
marked mucosal surface erosions (squares) with remarkable necrotic tips (black arrows). The lining
epithelium showing pyknotic nuclei (bent arrows). The CT cores have massive inflammatory cell
infiltration (yellow arrowheads). The crypts are displaying notable hyperchromatic nuclei of the
lining cells and apparent decrease of the well differentiated goblet cells (stars). 15 mg/kg PE-MP-
treated group: Showed almost the same finding as the previous group but more exaggerated. The villi
are shortened with atrophied tips (circles) and lost epithelial lining (black arrows). The inter-villous
spaces are widened (w) and are filled with sloughed tissue (red arrow). The crypts have vacuolated
cell lining (white arrows) with apparent decrease of the well differentiated goblet cells. Congested
vasculature are apparent in the submucosa (black arrowhead). 3.75 mg/kg PE-MP + Mel-treated
group: Apparent protective efficacy on intestinal villi covering epithelium integrity without abnormal
erosion (triangles). The villi show almost normal histology (arrows). Some crypts are showing
mild inflammatory cell infiltrate (yellow arrowheads). 15 mg/kg PE-MP + Mel-treated group: The
histological appearance has improved (triangles), but a few villi still have necrotic tips (square)
and focal atrophied lining epithelium (rectangle). Mild inflammatory cells (yellow arrowheads)
still apparent in the crypts. (Jejunum wall: scale bar = 200 µm, magnification = ×100; villi and
crypts: scale bar = 50 µm, magnification = ×400.) (B) Histograms represent: (a) villous length (µm);
(b) villous width (µm); (c) crypt depth (µm) in all experimental groups. The results are expressed as
the mean ± SD. ** Significant at p < 0.01; *** p < 0.001, and **** p < 0.0001.

Rats treated with melatonin showed improved pathological changes with nearly
normal villous and crypt morphology. This improvement was confirmed statistically by a
significant increase in villous height, width, and crypt depth (Figure 2).

2.3. Melatonin Improved the Enterocytes Ultrastructure Pathological Changes Induced by the
PE-MP Particles

The ultrastructure of the control groups displayed normal columnar enterocytes with
basal nuclei, normal mitochondria, and apical microvilli. The cells were closely opposed to
each other due to the junctional complexes between the cells. The PE-MP-treated groups
displayed necrotic enterocytes with rarified cytoplasm, degenerated mitochondria, broken
microvilli, and affected tight junctions. Some apoptotic cells were apparent. Some entero-
cytes turned into ghost cells with karyolysis nuclei in the 15 mg/kg PE-MP-exposed group
(Figure 3). Melatonin therapy apparently improved the enterocytes’ histological ultra-
structure, with nearly normal microvilli and tight junctions. However, some mitochondria
appeared normal while others still degenerated with destructed cristae (Figure 3).

2.4. Impact of PE-MP Exposure and Melatonin Treatment on the Mucin Secretion and Muc2
mRNA Expression

As shown in Figure 4A, Alcian blue staining demonstrated that mucin secretion sub-
stantially declined following exposure to 3.75 and 15 mg/kg of PE-MP compared with
the control. Mucin area %, goblet cell count, and goblet cell diameter analysis further
illustrated the decrease in the mucin secretion as they displayed a significant decrease in
the 3.75 and 15 mg/kg PE-MP-treated groups compared to controls. A marked decline
in the mucin area %, goblet cell diameter, and goblet cell count was also demonstrated in
the 15 mg/kg PE-MP-exposed group compared to the 3.75 mg/kg PE-MP-exposed group
(Figure 4B). The electron microscopy (EM) analysis further confirmed the above results
as the 3.75 mg/kg PE-MP-exposed group showed decreased mucin granules while the
15 mg/kg PE-MP-exposed group showed degenerated goblet cell and apparently dimin-
ished secretion (Figure 5). In addition, Muc2 mRNA’s expression level was substantially
downregulated in both the 3.75 and 15 mg/kg PE-MP-treated groups compared with
the control. Muc2 mRNA’s transcription levels decreased significantly in the high dose
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(15 mg/kg) PE-MP-exposed group compared to the low dose (3.75 mg/kg) PE-MP-exposed
group (Figure 6A).
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Figure 3. A representative set of electron micrographs of enterocytes from jejunum sections from
experimental groups. Control group: Normal tall columnar enterocytes (En) with oval basal nuclei
(N), mitochondria (red arrowheads), and finger-like apical projecting microvilli (mv). The apical
parts of the lateral membranes display dense areas of the tight junction (black arrows) between
cells. Mel-treated group: has the same normal histological morphology. 3.75 mg/kg PE-MP-treated
group: The enterocytes appeared necrotic with rarified cytoplasm (star), swollen mitochondria with
destructed cristae (yellow arrowheads), and broken apical microvilli (green arrowhead). Some apop-
totic cells (ap) with electron-dense cytoplasm appeared. Notice the decreased density of the cellular
junctions between cells (black arrows). 15 mg/kg PE-MP-treated group: Showed intensified previous
group results. Moreover, some enterocytes became like ghost cells (GCs) with nuclear karyolysis
(circle). 3.75 mg/kg PE-MP + Mel- and 15 mg/kg PE-MP + Mel-treated groups: Showed improved
histological ultrastructure, with nearly normal tight junctions. Some mitochondria appeared normal
(red arrowheads), while others still degenerated with destructed cristae (yellow arrowheads). (Scale
bar = 2 µm, direct magnification = ×10,000).
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Figure 4. (A) Representative set of Alcian-blue-stained jejunum sections from experimental groups.
The blue-stained areas represent mucin expression (1st column represents low magnification of
the full jejunal thickness of the experimental groups while, the 2nd and the 3rd columns represent
magnified red boxed regions (villi) and black boxed regions (crypts), respectively). Control group:
intense Alcian-blue-stained mucin areas in goblet cells and intestinal lumina of both villi and crypts.
Mel-treated group: shows nearly the same mucin distribution as the control group. PE-MP-treated
groups shows a marked reduction in Alcian-blue-stained areas (arrowheads) compared to the control
group indicating a defective intestinal mucous barrier. The reduced mucin was dose dependent
(higher in the 15 mg/kg PE-MP- than the 3.75 mg/kg PE-MP-treated group). Melatonin protected
the intestinal mucosal barrier, as indicated by considerably increased mucin in the 3.75 mg/kg
PE-MP + Mel- and 15 mg/kg PE-MP + Mel-treated groups. (Intestinal wall: scale bar = 200 µm,
magnification = ×100; villi and crypts: scale bar = 50 µm, magnification = ×400.) (B) Histograms
represent: (a) mucin area %; (b) goblet cell diameter (µm); (c) goblet cell count (no/crypt) in all
experimental groups. The results are expressed as the mean ± SD. * Significant at p < 0.05; ** p < 0.01;
*** p < 0.001, and **** p < 0.0001.
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Figure 5. A representative set of electron micrographs of goblet cells from jejunum sections from
experimental groups. Control group: Normal goblet cell (GC) between enterocytes (En). Each goblet
cell has a narrow base and a wide apex. The cytoplasm is filled with numerous mucin granules (mg).
Goblet cells empty their secretions in the intestinal lumen (L). Mel-treated group: demonstrated the
same normal histological morphology. 3.75 mg/kg PE-MP-treated group: Goblet cells appeared
with fewer mucin granules, while the 15 mg/kg PE-MP-treated group exhibited degenerated goblet
cells (dGC) with dark cytoplasm showing lytic foci (red arrow) and nearly absent mucin granules.
3.75 mg/kg PE-MP + Mel- and 15 mg/kg PE-MP + Mel-treated groups: showed improved histological
ultrastructure of goblet cells with restored secretion, but some cells still had vacuolated cytoplasm
(red arrow). (Scale bar = 2 µm, direct magnification = ×10,000.)
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Figure 6. (A) Muc2, (B) occludin, (C) ZO-1, and (D) MLCK gene expression in jejunal tissue samples
from experimental groups (n = 7/group), as determined by qPCR, normalized for the house-keeping
gene B-actin, and expressed relative to controls. Results are expressed as the mean± SD. ** Significant
at p < 0.01, *** p < 0.001, and **** p < 0.0001.

Interestingly, melatonin treatment significantly enhanced goblet cells’ measurements
and mucin secretion. Mucin secretion demonstrated with Alcian Blue staining, mucin area
%, goblet cell count, and goblet cell diameter was significantly increased with melatonin
treatment in both the 3.75 PE-MP + melatonin and 15 PE-MP + melatonin groups compared
to the 3.75 PE-MP and 15 PE-MP-exposed groups, respectively (Figure 4A,B). The electron
microscopy (EM) analysis also showed restored mucin granules and a nearly normal
appearance of goblet cells with melatonin treatment (Figure 5). Moreover, Muc2 mRNA’s
expression level was significantly elevated in the 3.75 PE-MP + melatonin and 15 PE-MP +
melatonin groups compared to the 3.75 PE-MP and 15 PE-MP-exposed groups, respectively
(Figure 6A).
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2.5. Impact of PE-MP Exposure and Melatonin Treatment on the Expression of Intestinal Epithelial
Tight Junction Proteins Occludin, ZO-1, Claudin-1, and MLCK

The results of the qPCR analysis for the mRNA gene expression of occludin (Figure 6B),
ZO-1 (Figure 6C), and MLCK (Figure 6D) showed that PE-MP exposure significantly upreg-
ulated MLCK and downregulated occludin and ZO-1 mRNA in both the 3.75 and 15 mg/kg
PE-MP-exposed groups in comparison with controls. In addition, immunohistochemistry
analysis showed significantly decreased immunoreactivity of claudin-1 (Figure 7) in both
the 3.75 and 15 mg/kg PE-MP-exposed groups in comparison with controls. Moreover,
a substantial elevation in MLCK, and marked declines in occludin, ZO-1, and claudin-
1 expressions were detected in the 15 mg/kg PE-MP-exposed group compared to the
3.75 mg/kg PE-MP-exposed group indicating that the effect of PE-MP exposure occurred
in a concentration-related manner.
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Figure 7. (A) A representative set of anti-claudin-1 immune-stained jejunum sections from the
experimental groups. The control group and Mel-treated group displayed marked cytoplasmic
immune expression of claudin-1 (arrows) in the intestinal epithelial lining of both villi and crypts.
The PE-MP-treated groups showed a marked reduction in immune expression compared to the
controls indicating loss of intestinal epithelial integrity. The reduced immune expression was dose
dependent (higher in the 15 mg/kg PE-MP- than in the 3.75 mg/kg PE-MP-treated group). Mel
apparently displayed a protective role detected by elevated claudin-1 immune expression compared
to pathological groups. (Scale bar = 50 µm, magnification = ×400). (B) The histogram represents
claudin-1% immune expression in the experimental groups. Data are presented as the mean ± SD.
*** p < 0.001, **** p < 0.0001.
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As shown in Figure 6, melatonin treatment significantly elevated mRNA expression of
ZO-1 and occludin as well as downregulated MLCK in both 3.75 PE-MP + melatonin and
15 PE-MP + melatonin groups in comparison to the 3.75 PE-MP and 15 PE-MP-exposed
groups, respectively. In addition, PE-MP-induced attenuation in immunoreactivity for
claudin-1 was significantly reversed by melatonin treatment (Figure 7). A nearly normal
cellular junction was observed by EM examination in melatonin-treated groups (Figure 3).

2.6. Effect of PE-MP Exposure and Melatonin Treatment on the Proinflammatory Cytokines (IL-1β
and TNF-α)

IL-1β and TNF-α concentrations were measured in the jejunal tissue samples to
determine whether PE-MP exposure could affect the proinflammatory cytokine release.
In this study, low-dose (3.75 mg/kg) PE-MP exposure did not result in any alternations
in TNF-α concentration in comparison to that in the control. Nevertheless, a significant
decrease was demonstrated in the high dose (15 mg/kg) PE-MP-exposed group compared
to all studied groups (Figure 8A). Compared to controls, a statistically substantial elevation
in IL-1β concentration was detected in the 3.75, and 15 mg/kg PE-MP-exposed groups. An
elevation in the IL-1β concentration was detected in the 15 mg/kg PE-MP-exposed group
compared to the 3.75 mg/kg PE-MP-exposed group, but this elevation was statistically
insignificant (Figure 8B).
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Figure 8. Proinflammatory cytokines levels in jejunal tissue samples from experimental groups
(n = 7/group). (A) TNF-α and (B) IL-1β. Data are expressed as the mean ± SD. * Significant at
p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001. Melatonin impact on proinflammatory cytokines
(TNF-α and IL-1β).

Melatonin treatment significantly increased TNF-α concentration in the 15 mg/kg
PE-MP+ melatonin group compared to the 15 mg/kg PE-MP-exposed group (Figure 8A).
In addition, a substantial decline in the concentration of IL-1β was detected with melatonin
treatment in both 3.75 PE-MP + melatonin and 15 PE-MP+ melatonin groups in comparison
to the 3.75 mg/kg PE-MP and 15 mg/kg PE-MP-exposed groups, respectively (Figure 8B).

2.7. Melatonin Effect on Intestinal Apoptosis Induced by PE-MP Exposure

Compared to controls, immunostaining for cleaved caspase-3 in jejunal sections re-
vealed significantly increased positive cells in both 3.75 and 15 mg/kg PE-MP-exposed
groups. In addition, the 15 mg/kg PE-MP-exposed group displayed significantly increased
positive cells compared to the 3.75 mg/kg PE-MP-exposed group (Figure 9). The increased
caspase-3 immunoreactivity validated the increased apoptosis signs detected by EM exami-
nation (Figure 3).
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Figure 9. (A) A representative set of cleared anti-caspase-3 immune-stained jejunum sections from
experimental groups. The control and Mel-treated groups displayed mild cytoplasmic immune ex-
pression of cleaved caspase-3. Conversely, PE-MP-treated groups showed intense immune expression
(arrows) compared to controls. The increased immune expression was dose dependent (higher in
15 mg/kg PE-MP than 3.75 mg/kg PE-MP-treated group). Mel apparently displayed a protective role
detected by decreased cleaved caspase-3 immune expression compared to pathological groups. (Scale
bar = 50 µm, magnification = ×400). (B) The histogram represents Cleaved caspase-3% expression in
the experimental groups. The outcomes are expressed as the mean ± SD. * Significant at p < 0.05,
*** p < 0.001, and **** p < 0.0001. Melatonin effect on intestinal apoptosis induced by PE-MP exposure.

Melatonin therapy significantly attenuated caspase-3 immunoreactivity in both
3.75 mg/kg PE-MP+ melatonin and 15 mg/kg PE-MP+ melatonin groups compared to the
3.75 mg/kg PE-MP and 15 mg/kg PE-MP-exposed groups, respectively (Figure 9). The
antiapoptotic effect of melatonin was further illustrated through decreased apoptosis cells
detected by EM examination (Figure 3).

3. Discussion

The widespread presence of MP in the environment exposes humans to MP via dermal
contact, inhalation, and ingestion [37], posing a significant concern for possible long-term
health hazards. Several investigations on many species demonstrated that ingested MP
accumulate in the gut of diverse animals; hence, the toxicological implications of chronic
MP exposure on intestinal health are currently being evaluated [6]. With oral administration
of PE-MP, the gastrointestinal tract may be the major target organ. Mechanical, as well as
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chemical, barriers are vital components of the intestinal barrier. The mechanical barrier
comprises intact intestinal epithelial cells and dense intercellular connections. Mucus is
secreted by goblet cells in the intestinal epithelium to create the intestinal mucus barrier, a
crucial chemical barrier component [21].

The gastrointestinal mucus layer functions as the frontline defense physiological bar-
rier. Muc2 mucin, which is generated by goblet cells, constitutes the majority of this mucus
layer [38]. To assess the impacts of PE-MP exposure on intestinal mucus secretion, Muc2
mRNA gene expression was analyzed as Muc2 is the predominant gel-forming mucin
contributing to mucus barrier formation. Muc2 transcription levels were substantially
downregulated in the PE-MP-exposed groups compared to controls. Moreover, exposure
to 15 mg/kg PE-MP induced significant Muc2 mRNA downregulation compared to the
3.75 mg/kg PE-MP-exposed group indicating a dose-related effect of PE-MP exposure.
The outcomes of Alcian Blue staining, mucin area %, and goblet cells’ measurements
were all analyzed and further illustrated that mucin secretion substantially declined fol-
lowing exposure to PE-MP. Consistent with these results, Jin et al. (2019) [9] and Chen
et al. (2022) [22] also reported that polystyrene and polyvinyl chloride MP significantly
diminished the mucus secretion, as well as Muc2’s mRNA levels. Conversely, Sun et al.
(2021) [34] did not detect substantial changes in Muc2’s mRNA levels in mice colons after
PE-MP exposure, and a trend of an increase was observed instead, although they reported
a significant decrease in mucin production. They explained that this might be attributed to
the upregulation feedback of reduced mucin.

In this study, melatonin administration significantly restored mucin depletion in-
duced by PE-MP exposure, as demonstrated by the significant enhancement of goblet
cells’ measurements and upregulation of Muc2 mRNA levels in the 3.75 mg/kg PE-MP +
melatonin and 15 mg/kg PE-MP + melatonin groups compared to the 3.75 mg/kg PE-MP-
and 15 mg/kg PE-MP-exposed groups, respectively. In accordance with our results, nu-
merous studies have revealed that melatonin improves mucin production in the intestine.
Kim et al. (2020) [29] demonstrated substantially elevated mRNA expression of Muc2 and
induction of goblet cells after melatonin treatment. Lee et al. (2020) [38] also demonstrated
that melatonin pretreatment onto goblet cells markedly enhanced mucin production and
suggested that the molecular mechanism underlying this melatonin action is by acting on
melatonin receptor two and inhibiting the Muc2 promoter hypermethylation in order to
restore Muc2 production level in the intestinal epithelial cells.

Maintaining intestinal homeostasis depends on intestinal epithelium’s structural
integrity, maintained by junctional protein complexes (such as desmosomes, adherens
junctions, and tight junctions) that seal adjacent epithelial cells and control intestinal per-
meability [39]. Tight junction function is crucial to intestinal health, since a compromised
intestinal barrier may result in a variety of illnesses. Furthermore, this function is controlled
by the tight junction proteins’ phosphorylation, distribution, and expression level [40].

Numerous animal investigations indicate that MP ingestion impairs critical intestinal
functions, including gut barrier function, as well as gut microbiota modulation [6], although
the primarily impaired barrier proteins remain undefined. Moreover, the MP that is usually
investigated based on its in vivo impacts is polystyrene (PS) and polypropylene (PP), while
PE, the most widely used type, is studied to a lesser extent. In this study, we examined
the impact of PE-MP oral ingestion in albino rats on occludin, MLCK, claudin-1, and ZO-1
tight junction protein expressions.

Our findings reveal that PE-MP exposure, in both the 3.75 and 15 mg/kg PE-MP-
treated groups, significantly upregulated MLCK, downregulated occluding and ZO-1
mRNA, and decreased immunoreactivity of claudin-1. In contrast to the above results,
Toto et al. (2022) [41] demonstrated substantially elevated mRNA levels of occludin and
concentration of the ZO-1 protein in the duodenum of groups receiving PE-MP. Liang
et al.’s (2021) [42] results were also different; they reported that PS50 and PS500 did not
change tight junction protein mRNA expression in the jejunum, while when PS500, as
well as PS50, were administrated as a mixture, most of the tight junction protein mRNA
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expression increased in the jejunum. The results of Qiao et al. (2021) [43] are, to some
extent, in line with our results, as they revealed that nano PS-COOH moderately declined,
whereas micro/nano PS-NH2 substantially diminished ZO-1 and claudin-1 expression.
Conversely, micro PS-COOH and micro/nano PS exhibited a diminished effect on these
protein expressions. Discrepancies in these results may be due to differences in the MP
type, particle size, route, and duration of administration, which should be investigated
in great detail. Studies that used PE-MP to determine the impact of this MP type on the
tight junction protein are scarce; further studies using the same experimental conditions
are needed in order to directly compare the results.

Interestingly, melatonin treatment provided obvious intestinal barrier protection, as
evidenced by its effect on mucin production and the intestinal epithelial tight junction
proteins. Melatonin treatment significantly upregulated occludin and ZO-1 mRNA, claudin-
1 protein expression, and downregulated MLCK mRNA in this study, which aligns with Lin
et al. (2020) [44]. They demonstrated substantially elevated claudin-1, ZO-1, and occludin
protein expression with melatonin treatment.

The molecular mechanism underlying tight junction protein regulation seems complex
and unclear; however, a substantial body of data has emphasized the significance of
cytokines regulating numerous tight junction proteins. For example, IL-6, TNF-α, IL-10,
IL-1β, and IL-17 were implicated in intestinal inflammation and regulation of tight junction
proteins function [45].

We evaluated TNF-α and IL-1β cytokine levels to determine whether PE-MP exposure
triggers inflammation and whether they are impacted in tight junction proteins regulation.

Although both TNF-α and IL-1β are proinflammatory cytokines, PE-MP exerted a
different effect on them. The results of this study reveal that the low dose (3.75 mg/kg)
PE-MP did not induce significant changes in TNF-α compared to the controls. TNF-α is an
essential mediator of inflammation in the gut, and its level is markedly elevated in patients
with inflammatory conditions of the gut [46]. In addition, it has been shown to impair
TJ expression or localization and, subsequently, induces barrier dysfunction [47]. Several
previous studies did not reveal significant differences in the TNF-α level after exposure
to various types of MP [48–50]. On the contrary, others reported an increase in TNF-α
levels [51,52]. No in vivo studies reported significant decreases in the TNF-α value after
MP exposure. However, the high dose (15 mg/kg) PE-MP administration in this study
significantly decreased the TNF-α level compared to other groups. Notably, in Han et al.’s
(2020) study, TNF-α released from peripheral blood mononuclear cells (PBMCs) declined
as polyvinyl chloride (PVC) and acrylonitrile butadiene styrene (ABS) MP concentrations
increased [50]. Further studies demonstrating the effect of various concentrations of MP
on TNF-α release are needed. Gautam et al. (2022) also investigated the effects of PE-
MPs on different human cell lines and reported that 5 µm PE-MPs reduced the level of
TNFα production in THP-1 and U937 cell lines, while large-sized PE-MPs reduced the
level of TNFα in U937 and upregulated it slightly in THP-1. They concluded that the
immunomodulation caused by MPs could depend upon the nature of MPs or cells [53].

Our previous study demonstrated that MP exposure is linked to DNA hypermethyla-
tion and that the degree of hypermethylation increased with higher dose of exposure [54].
Further research is needed to investigate whether the TNF-alpha promoter is among the
hypermethylated locations; this could explain the decreased TNF level observed with the
high dose of PE-MP administration in this study. Furthermore, in this study, melatonin
treatment with the high dose (15 mg/kg) PE-MP exposure restored TNF-α to levels close to
the controls. Several studies have demonstrated the role of melatonin in modulating DNA
methylation. It has been reported that melatonin significantly decreases the methylation
level (5-mC) via downregulating the expression of DNA methyltransferases (DNMTs) [55],
which further supports the assumption that MP-induced DNA hypermethylation could
impact on decreasing TNF levels.
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Although proinflammatory cytokines were frequently lowered by melatonin in many
models of severe inflammation, contradictory responses were observed in some other
circumstances where melatonin proved protective while elevating TNFα [33,56].

This study revealed a substantial elevation in IL-1β in the 3.75 and 15 mg/kg PE-MP-
treated groups compared to the control. This finding further supports what several studies
previously reported, demonstrating increased IL-1β expression after exposure to different
types of MP [57–59]. The anti-inflammatory role of melatonin revealed in numerous
studies [28,60–62] was evident in the 3.75 mg/kg PE-MP + melatonin and 15 mg/kg PE-MP
+ melatonin groups, as melatonin administration in these groups significantly decreased
the IL-1β level.

Chemokines and cytokines are essential players in intestinal epithelial barrier integrity.
Cytokines may enhance or diminish the permeability of epithelial tight junctions by altering
the expression or distribution of their protein components. Cytokines may also stimulate
myosin light-chain phosphorylation, causing tight junctions to contract and open [45].
Recent research has demonstrated that the IL-1β-induced increase in intestinal epithelial
tight junction permeability in mouse small intestine, as well as Caco-2 intestinal epithelial
monolayers, was mediated by the elevated MLCK gene activity and protein expression,
along with elevated MLCK enzymatic activity. IL-1β-induced elevation in intestinal tight
junction permeability is reliant on post-transcriptional degradation of occludin mRNA
through an increase in miRNAs that bind to occludin mRNA 3’UTR, in addition to targeting
the activation of MLCK gene activation [63–65]. Moreover, it has been shown that IL-1β
disrupts the barrier function of Simian virus 40-immortalized human corneal epithelial
(HCE) cells through ZO-1 and occludin redistribution from the borders of adjacent HCE
cells in a manner reliant on the signaling pathways of NF-κB [66]. In addition, Maria-
Ferreira et al. (2018) illustrated that IL-1β led to diminished claudin-1 expression [67].

Taken together, our results thus suggest that the increased IL-1β level observed with
PE-MP exposure in this study may be impacted by the disruption of the barrier function
through the upregulated MLCK mRNA, downregulated occludin and ZO-1 mRNA, and
decreased claudin-1 expression. Moreover, TNF-α and IL-1β levels demonstrated in this
study further suggested that epithelial barrier dysfunction is mediated mainly by increased
IL-1β levels, as the TNF-α level did not change with a low dose of PE-MP and even
significantly decreased with a high dose of PE-MP.

In this study, the significantly increased cleaved caspase-3-positive cells in the PE-
MP-exposed groups further confirmed the increased apoptosis signs observed by EM
examination. Several previous studies reported MP-induced apoptosis in various mod-
els [68,69]. Evidence has revealed that IL-1β is crucial for the process of apoptosis [70].
The increased IL-1β level observed with PE-MP exposure in this study suggests that the
increased apoptosis observed may be IL-1β induced. Interestingly, melatonin treatment
significantly decreased apoptotic cells and cleaved caspase-3 expression. Several previ-
ous studies reported the antiapoptotic effect of melatonin, which further support these
results [71,72].

PE is one of the most prevalent and frequently utilized plastic types worldwide, and
PE-MP rank as the most significant proportion of MP in the environment [34]. However,
studies on PE-MP toxicological impact on the function of intestinal barriers are limited.
Sun et al. (2021) [34] and Toto et al. (2022) [41] both investigated the effects of oral PE-MP
on the intestinal barrier. However, PE exposure in both studies differed from that in the
current study. Sun et al. (2021) [34] used MP with a size of 1–10 µm applied by oral gavage
at a dose of 0.2 µg/g/day, while Toto et al. (2022) [41] used MP of 15–48 µm size in feed at
a dose of 25 mg/day through 25 g feed. This is in contrast to our study, as we used MP
with a size of 4–6 µm applied by oral gavage at a dose of 3.75 mg/kg/day (low-dose group)
or 15 mg/kg/day ((high-dose group). Although Sun et al.’s (2021) [34] exposure design
was relatively similar to ours, regarding the particle size and route of administration, the
dose they used was much lower than ours, which may explain the absence of significant
intestinal histological damage in their study.
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To conclude, the present study demonstrated that orally ingested PE-MP under the
chosen experimental conditions provoked damaging effects on the intestinal mucus barrier,
epithelial cells, and tight junction proteins primarily through decreased mucin secretion;
downregulation of Muc2, occludin, and ZO-1 mRNA; and decreased claudin-1 protein
expression. Higher concentration induced higher intestinal barrier disruption. Melatonin
treatment provided obvious protection and significantly reduced PE-MP-induced intestinal
barrier dysfunction. The impacts of MP ingestion on the intestinal barrier integrity are
controversially discussed because of differences among the studies in several factors, such
as the MP type, size of the particles, route, and duration administration. More research is
required in order to address the existing knowledge gap on the detrimental effects of MP
on intestinal barrier function.

4. Materials and Methods
4.1. Chemicals

PE-MP (MPP-635XF; Micro Powders Inc., Tarrytown, NY, USA) were used with mean
particle sizes ranging from 4.0 to 6.0 µm. Characterization of the PE-MP particles was
performed using scanning electron microscopy and documented in our previously pub-
lished research [54]. Melatonin was purchased from Sigma-Aldrich (St. Louis, MI, USA).
Chloroform (ADWIC, Abu-Zabaal, Qalyubia, Egypt), isopropanol (Middle East Chemicals
MEC, Cairo, Egypt), 70% ethanol (the international company for medical industries, Giza,
Egypt), and RNase-free Water (Vivantis technologies, Shah Alam, Malaysia) were used for
RNA extraction.

4.2. Animals

Forty-nine adult male albino rats (aged 8 weeks and weighing 150–180 g) were ob-
tained from the Faculty of Science’s Animal House, Benha University, Egypt. Rats were
categorized into seven groups of 7, and each group of rats was housed in separate cages,
kept at 25 ◦C with a relative humidity of (45 ± 5%), and 12/12 h light and dark cycles.
Additionally, all rats were provided with free access to water ad libitum, as well as food.
Prior to the trial, all rats were acclimated to the housing environment of the animal facility
for one week. The research adhered to the guidelines for the care and use of laboratory
animals [73], as well as approved by the Faculty of Science’s Research Ethics Committee,
Benha University, Egypt (approval no. ZD/FSc/BU-IACUC/2022-18b).

4.3. Study Design

All treatments were given by oral gavages for 5 weeks, and the animals were divided
into seven groups of seven as follows:

Group I (control group; n = 14): Animals were equally subdivided into 2 groups (7 rats
each):

Subgroup IA: This group received oral saline solution (0.9% NaCl) + ethanol (1%) once
daily;

Subgroup IB: This group received 1 mL of oral corn oil once daily.
Group II (melatonin group; n = 7): This group was treated orally with immediately

prepared melatonin (5 mg/kg/day). Melatonin was dissolved in absolute ethanol before
being diluted with saline to achieve a final alcohol content of 1% ethanol. Following
preparation, the bottles were protected from light utilizing aluminum foil and given to the
animals [28,74].

Group III (low dose of PE-MP group; n = 7): This group received 3.75 mg of PE-
MP/kg/day dissolved in 1 mL of corn oil [35].

Group IV (high dose of PE-MP group; n = 7): This group received 15 mg of PE-
MP/kg/day dissolved in 1 mL of corn oil [35].

Group V (low dose of PE-MP + melatonin group; n = 7): This group received 3.75 mg
of PE-MP/kg/day concurrently with melatonin (5 mg/kg/day).
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Group VI; (high dose of PE-MP+ melatonin group; n = 7): This group received 15 mg
of PE-MP/kg/day concurrently with melatonin (5 mg/kg/day).

At the end of the experiment, all rats were fasted for 8 h and euthanized via de-
capitation following inhalation anesthesia with isoflurane (El Amriya for pharmaceutical
industries, Al Amyria, Alexandria). The intestinal tissue samples were collected on ice, and
intestinal segments from the jejunum were cut.

4.4. Microplastics Quantification

PE-MP quantification in the jejunal tissue samples was conducted as per Hamed et al.
(2019) [75]. In brief, the digestion of jejunal tissue samples (≈0.3 g) was conducted in
hydrogen peroxide (10 mL) (30%, v:v) at 70 ◦C for 2 h. The resultant solution (100 µL) was
subsequently examined and counted utilizing the light microscope.

4.5. Biochemical Analysis

Jejunal tissues samples were rinsed in ice-cold saline before being homogenized with
phosphate buffer (pH 6–7) utilizing a Mixer Mill MM400 (Retsch, Germany). Centrifugation
of the tissue homogenates was performed for 15 min at 10,000× g, 4 ◦C. Afterward, the
supernatant was utilized to quantitively detect the following proinflammatory cytokines
per the manufacturer: interleukin-1β (IL-1β) utilizing the rat IL-1β with the Quantikine
ELISA Kit (Catalog #RLB00; R&D Systems, Inc., Minneapolis, MN, USA) and tumor necrosis
factor (TNF-α) utilizing the rat TNF-alpha with the Quantikine ELISA Kit (Catalog #RTA00;
R&D Systems, Inc., USA).

4.6. Quantitative Real-Time Polymerase Chain Reaction (qPCR) Analysis for mRNA Gene
Expression of MUC2, Occludin, ZO-1, and MLCK

Samples of jejunal tissues utilized for PCR and RNA extraction were preserved in
RNA later solution (RNA stabilizing reagent) (Qiagen Inc., Valencia, CA, USA) at 10 µL per
1 mg of tissue and subsequently kept at −80 ◦C until analysis.

4.6.1. Total RNA Extraction and Reverse Transcription

Total RNA extraction from the jejunal tissue samples was performed using GENEzol™
Reagent (Catalog No: GZR100; Geneaid, New Taipei City, Taiwan) Plus chloroform, iso-
propanol, 70% ethanol, RNase-free Water, and microcentrifuge tubes (1.5 mL; RNase-free)
based on the manufacturer’s instructions. RNA purity and concentration were evaluated
by the measurement the absorbance at 280 nm and 260 nm utilizing a NanoDrop One
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The A260/A280 ratio
of pure RNA ranges from 1.8 to 2.1 [76]. The RNA’s reverse transcription (RT) into comple-
mentary DNA (cDNA) was conducted in a Veriti™ Thermal Cycler (Applied Biosystems,
Foster City, CA, USA) utilizing the TOPscript™ RT DryMIX (dT18/dN6) Kit (catalog no:
RT220; enzynomics, Daejeon, Republic of Korea). Additionally, 5 µL RNA template and
20 µL nuclease-free water were added to each RT tube supplied. The temperature was
fixed to 42 ◦C for 1 h, followed by 10 min of RTase inactivation at 85 ◦C.

4.6.2. Quantitative Real-Time PCR

Gene expression’s relative quantitation was conducted utilizing Hera Sybr Green
qPCR kit (Willowfort, UK). Singleplex reactions were performed; each mix contained 4 µL
cDNA, 1 µL reverse primer (RP), 1 µL forward primer (FP), and 10 µL Hera Sybr master
mix (2×), as well as up to 20 µL nuclease-free water. StepOne Real-Time Cycler (Applied
Biosystem, Singapore) was utilized to run amplification. A 95 ◦C initial holding stage for
10 min was conducted prior to cycling for 40 cycles (15 s for denaturation at 95 ◦C and then
annealing at 50 ◦C and extension for 1 min at 60 ◦C). In each run, a melting curve analysis
was performed to confirm the assay specificity. The primer sequences are displayed in
Table 1. After adjusting for B-actin expression, each sample’s mRNA expression was
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determined. The relative expression was computed utilizing the 2−∆∆CT method [77]. The
findings are expressed as the n-fold difference relative to controls.

Table 1. Primer sequences utilized for RT-PCR analysis.

Gene Name Primer Sequences (5’→3’)
(F: Forward; R: Reverse) Accession Number

Occludin F: ccttttgagagtccacct
R: gtcttccgggtaaaaaga AB016425.1

MLCK F: gcacagaaatgggcaaac
R: gcttcacaggtgtacttg NM_001105874.2

ZO-1 F: tctgatcattccacacag
R: tccactgctttgggtgta NM_001106266

MUC2 F: acctggggtgacttccact
R: atcaggacggactctatg U68172.1

B-actin F: ctacctcatgaagatcctcacc
R: agttgaaggtagtttcgtggat NM_007393.5

4.7. Histological Study

Small jejunal parts approximately 1 cm long were fixed in a 10% neutral buffered
formalin solution (10% NBF) for 24 h. Tissues were then processed for hematoxylin and
eosin (H&E) stain. Moreover, other sections were stained with Alcian blue stain to study
the goblet cells and the mucous layer according to Khedr et al. (2022) [78]. All these steps
were conducted according to standard practice [79].

4.8. Immunohistochemical Study

Immunohistochemical staining was performed according to the standard method [80].
De-paraffinized retrieved jejunum tissue sections (5–7 µm) were treated for 20 min with
0.3% H2O2 before incubation with anti-claudin-1 (1:100—Thermofisher—37–4900) and anti-
caspase-3 (active/pro) (1:200-Clone 31A1067, Catalog #MC0123, Medaysis, Livermore, CA,
USA) overnight at 4 ◦C. Sections were then rinsed with PBS and treated with a secondary
antibody HRP Envision kit (DAKO) for 20 min. Afterward, washing and incubation with
diaminobenzidine (DAB) was conducted for 30 min at ambient temperature. Following the
IHC reaction, dehydration of the slides in ethanol (70%, 96%, absolute), as well as xylene,
was performed and subsequently closed with Dako Mounting Medium (Agilent, Santa
Clara, CA, USA). The slides were washed in PBS before counterstaining with hematoxylin
and then dehydrated, cleared in xylene, and covered for microscopic analysis.

4.9. Transmission Electron Microscopic Examination

The jejunal samples were divided into small pieces (1 mm3) for TEM examination
before being fixed in buffered glutaraldehyde (2.5%) in phosphate buffer solution (0.1 M;
pH 7.4) for 2 h at 4 ◦C. The samples were processed for ultrathin (70 nm) and semi-thin
(0.5 um) sections in accordance with Ayub et al. (2017) [81]. At the electron microscope unit,
the Regional Center for Mycology and Biotechnology (RCMB) at the Faculty of Science,
Al-Azhar University (Cairo, Egypt), the examination and photographing of grids were
conducted utilizing a transmission electron microscope (JEOL. JEM1010, Tokyo, Japan) at
70 kV.

4.10. Imaging

Six nonoverlapping fields were randomly selected and scanned from each sample to
measure mucin area and goblet cell number and diameter. The true positive reaction of
the mucin was selected in each field/tissue sample. Then, the diameter of goblet cells was
measured (minimum 30 goblet cells/field/tissue sample). Moreover, The area % of im-
munohistochemical mean claudin-1 and caspase-3 expression levels in the jejunum was also
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determined by randomly selecting and scanning six nonoverlapping fields. One standard
module for assessing IHC expressions is the relative area % of positive reactions computed
from the entire field area. All light microscopic examinations and data were collected
utilizing an automated grade standard unit Leica Application module preprogrammed for
histological analysis that was connected to a Full HD microscopic imaging system (Leica
Microsystems GmbH, Wetzlar, Germany) to analyze the total sample section computed
from the entire field area. All light microscopic examinations and data were collected
utilizing an automated grade standard unit Leica Application module preprogrammed for
histological analysis that was connected to a full HD microscopic imaging system (Leica
Microsystems GmbH, Wetzlar, Germany) to analyze the total sample section.

4.11. Statistical Analysis

The 9th version of GraphPad Prism software (USA) was utilized for statistical analysis.
The results are expressed as the mean ± standard deviation (SD). Normality was verified
utilizing the Kolmogorov–Smirnov test. Moreover, comparisons among groups were
analyzed utilizing one-way variance analysis (ANOVA) followed by Tukey’s multiple
comparison tests. The statistical significance was determined at a p-value < 0.05.
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